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The issue of mechanical equilibrium conditions at junctions of sharp anisotropic interfaces
is addressed. The well known Herring conditions are valid for a given junction direction. It
is shown that if a system of interface segments joint along a line is allowed to change line
direction, some additional relations are applicable. They are derived using the
Hoffman–Cahn formalism of capillarity vector. As an example proving significance of the
additional relations, criteria for wetting of anisotropic boundaries are considered. If the
direction of the triple line is fixed, the criteria are shown to be different from those known
for isotropic interfaces. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Triple junction equilibrium equations are of importance
for various branches of interface science. Our interest
in the subject stems from the experimental attempt to
determine the relative grain boundary energy from the
geometry of junctions [1]. The geometry is affected by
the dependence of the boundary energy on the boundary
orientation. This anisotropy is taken into account in
the classical relations known as the Herring conditions
for mechanical equilibrium of sharp interface junctions
[2].

This paper puts emphasis on the overlooked fact that
the junction equilibrium conditions are limited to the
Herring conditions only if the direction of the junction
line is fixed in space. In physically meaningful situa-
tions, this constraint cannot be justified and leads to
awkward conclusions. As an example, we show that
in the case of perfect wetting of boundaries, the Her-
ring relations for the fixed junction direction lead to
equations which are in contradiction with the energetic
(Gibbs-Smith) principle. If the junction of interfaces
is allowed to change orientation, the state of equilib-
rium is associated with additional requirements; we
derive the necessary conditions at which such an un-
constrained junction is stationary. Going back to the
example of wetting, it is shown that the application
of these new conditions in conjunction with the Her-
ring relations leads to Gibbs-Smith principle. Finally,
in concluding remarks, we consider a number of com-
plex physical situations which potentially can be better
understood if the presented more complete description
of interactions at junctions of anisotropic interfaces is
applied.

This communication points out the importance of
global approach and indicates that analysis restricted
to specific cases must be used with care. The ex-
ample of wetting shows that the conclusions drawn
from an analysis limited to two dimensional sections

of junctions may differ from those reached when a
larger three dimensional system is considered. Gen-
erally, clarification of the equilibrium conditions at
boundary junctions is essential for understanding prop-
erties of polycrystalline aggregates with anisotropic in-
terfaces since it strengthens the foundation on which
more complete analyses (involving kinetic factors) are
based.

2. Classical conditions
In the isotropic case, the mechanical equilibrium con-
ditions for sharp interfaces coincident at a junction are
known as Young’s law [3]

∑

k

γk tk = 0, (1)

where γk is the free energy density of the k-interface,
and tk is a unit vector perpendicular to the junction and
tangent to the k-interface at the junction; the sense of
tk is chosen as in Fig. 1a.

For crystalline materials, the interface free energy
may depend on the interface inclination with respect
to the crystal lattice. The Herring relationship, which
is applicable in this case, can be best expressed by the
use of the so-called capillarity vector [4]. Let s be the
‘area vector’ with magnitude |s| equal to the interface
area and direction normal to the interface. The capillar-
ity vector ξ of the interface with the free energy den-
sity γ = γ (s) can be seen as the ‘generalized force’
for the configuration determined by the parameters
s

d(γ |s|) = ξ · ds.

If the interface energy depends only on the unit vector n
normal to the interface (i.e., if γ (αs) = γ (s) for α �= 0),

0022–2461 C© 2005 Springer Science + Business Media, Inc. 2803



INTERFACE SCIENCE SECTION

Figure 1 Schematic illustration of: (a) vectors involved in the analysis
of a general triple junction, (b) geometry of wetting.

one can derive the relationship γ = ξ · n allowing γ to
be calculated from ξ [4].1

Now, let ξk be the capillarity vectors of interfaces
forming a junction parallel to a unit vector l, and let the
sense of ξk be such that (l × tk) · ξk > 0 for all k. The
Herring condition simply expresses the fact that the net
force in the plane perpendicular to l is zero [4–6]

l ×
∑

k

ξk = 0; (2)

the force component along the junction is immaterial
for the in-plane equilibrium.

Anisotropy and criterion for non-reactive
wetting
Let us assume that the boundary 1 is to be wetted by
a phase contained between faces 2 and 3. It is well
known that in the isotropic case, wetting may occur
if the energy of the appearing new interface segments
does not exceed the energy of the vanishing boundary
segment, i.e., the criterion for (perfect) wetting is γ2 +
γ3 ≤ γ1. After [7], we will refer to this rule as Gibbs-
Smith principle. The bounding condition of the rule can
be written as

(γ2 + γ3)/γ1 = 1. (3)

The question is whether the Gibbs-Smith principle fol-
lows from the equilibrium conditions of Herring when
some of the involved interfaces are anisotropic.

In order to verify this, the capillarity vector is ex-
pressed as ξk = γknk + τ k , where nk = l × tk , and τ k

is the torque term satisfying τ k · nk = 0. The Herring
relations (2) take the form

∑

k

γk tk = l ×
∑

k

τ k . (4)

1The definition of the ξ vector given above is limited to boundary incli-
nations at which γ |s| is differentiable. In particular, that does not occur
for inclinations corresponding to energy cusps. However, as already
noted by Hoffman and Cahn [4], a given real interface has a unique
ξ even if its inclination is ’special’. Accordingly, ξ vectors at edges
of interfaces are uniquely determined and there is no ambiguity about
forces acting at junctions.

The boundaries approach the wetting conditions when
the angle between vectors t2 and t3 goes to zero
(Fig. 1b). For t2 = t3, Equations 4 lead to

− γ1 + (γ2 + γ3) cos δ = n1 · (τ 2 + τ 3) and

γ1 cos δ − (γ2 + γ3) = n2 · τ 1, (5)

where cos δ = −t1 · t2, and only the cases with the
angle δ close to 0 are considered. These relations link
the geometrical elements n1, n2 and δ to the physical
properties of the interfaces. For non-zero torque terms,
the angle δ can be non-zero.

The meaning of (5) becomes clearer by considering
simple particular cases. Let us assume that the two in-
terfaces of low energy are isotropic (τ 2 = 0 = τ 3) and
τ 1 is allowed to be non–zero. In this case, the bounding
condition (3) is replaced by

(γ2 + γ3)/γ1 = 1/ cos δ (≥1). (6)

On the other hand, if the high energy boundary is
isotropic (τ 1 = 0), and there are no constraints on
τ 2 and τ 3, one obtains

(γ2 + γ3)/γ1 = cos δ (≤1). (7)

By comparing (6) and (7) based solely on the Herring
relations with the Gibbs-Smith principle, one gets an
idea of the influence of anisotropy on wetting in the
case of fixed junction direction. Roughly, wetting may
occur for a lower energy ratio (γ2 + γ3)/γ1 if the wet-
ting medium has anisotropic interfaces, and a higher
energy ratio is required if the boundary to be wetted is
anisotropic.

3. Additional conditions
The Herring condition expresses the mechanical equi-
librium of forces in the plane perpendicular to a junction
with a given direction. However, the spatial orientation
of the junction is also a function of the interface prop-
erties. Each interface contributes some torque acting
towards the change of the junction direction. To take
that into account, one must consider the object com-
prising not only the junction line but also the adjacent
interface segments. The simplest case is a junction of
planar interfaces with equal areas.

Let sk be the area vector of the k-th interface at
the junction. With the interfaces limited by a cylinder
of unit radius centered at the junction, the vectors sk

are given by sk = l × tk (= nk). Let the vector dω
determine an infinitesimal rotation: the rotation axis
(through the junction) is parallel to dω, and the rota-
tion angle equals |dω|. The rotation changes the vector
sk by dsk = dω × sk . Hence, the change of the energy
accumulated in the system is given by

∑

k

ξk · dsk =
∑

k

((l · ξk)tk − (tk · ξk)l) · dω.

For a stationary configuration, there occurs
∑

k((l ·
ξk)tk − (tk · ξk)l) = 0. Since tk are perpendicular to l,
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we get

∑

k

tk · ξk = 0 and
∑

k

(l · ξk)tk = 0. (8)

In conjunction with Herring relations, these are the con-
ditions necessary for the stability of equal-area planar
interfaces joined along a line.

With the capillarity vector expressed as ξk = γknk +
τ k , the relations (8) take the form

∑

k

tk · τ k = 0 and
∑

k

(l · τ k)tk = 0, (9)

respectively. The Herring Equations 4 relate both the
energies and the torques to the geometry of an equili-
brated junction, whereas the additional conditions (9)
involve only the torque components. In the isotropic
case (τ k = 0), the Herring conditions are reduced to
the Young’s law (1), whereas the additional conditions
become trivial identities.

Wetting criterion revisited
It must be stressed again that the relations (5–7) are
applicable only if the equilibrium conditions are based
solely on Herring relations with the direction of the
junction fixed. A different picture appears if also Equa-
tions 9 are taken into account. For the configuration
corresponding to wetting (t2 = t3), the relations (9)
take the forms

t1 · τ 1 + t2 · (τ 2 + τ 3) = 0, (10)

(l · τ 1) n1 + (l · (τ 2 + τ 3)) n2 = 0. (11)

From (11) one obtains

l · τ 1 = 0 = l · (τ 2 + τ 3) if δ �= 0 and

l · τ 1 = l · (τ 2 + τ 3) if δ = 0,

i.e. the torque components parallel to l can be non-
zero only if δ = 0. Moreover, the torque τ 1 can be
expressed as τ 1 = (τ 1 · t1)t1 + (τ 1 · l)l and, similarily,
τ 2+τ 3 = ((τ 2+τ 3)·t2)t2+((τ 2+τ 3)·l)l. Hence, one
has n2 ·τ 1 = (n2 · t1)(τ 1 · t1) and n1 · (τ 2 +τ 3) = (n1 ·
t2)((τ 2+τ 3)·t2). Because of (10) and n1 ·t2 = −n2 ·t1,
there occurs n2 ·τ 1 = n1 · (τ 2 +τ 3), i.e. the right-hand
sides of Equations 5 are equal. Consequently, equality
of their left-hand sides leads to

(γ2 + γ3)/γ1 = 1.

Thus, if the junction is allowed to change its orientation,
wetting of anisotropic interfaces is determined by the
basic Gibbs-Smith rule.

4. Concluding remarks
The considered example of wetting shows that in the
presence of anisotropy, the Gibbs-Smith principle is

not consistent with the fixed direction of the triple line.
The principle is applicable if equilibrium of a larger
object involving planar interface segments is consid-
ered. This observation is particularly important for the
investigation of melt distribution in equilibrated par-
tially molten geological systems (cf. [8]). The example
sheds light on the complexity of interactions at interface
junctions. More generally, understanding the influence
of anisotropy on equilibrated junctions may be helpful
in clarifying certain instabilities in anisotropic systems.

For instance, the described impact on wetting may
explain some aspects of the penetration of liquid along
grain boundaries in systems with unstable bound-
ary grooves [9, 10]. In such cases, the occurrence
of regular grooves appears to be random, penetration
channel profiles are poorly reproducible, and faceting
in solid/liquid interfaces is observed. The boundary
anisotropy is recognized as a factor contributing to
these intricate wetting geometries [11]; therefore, also
anisotropy related complex interactions at grooves’
roots (junctions) must play a role in ’destabilizing’ the
grooves.

Similar destabilizing effects are likely in polycrystals
with solid/solid boundaries. Since rotations lead to large
displacements at finite distances from rotation axes, in
real materials, the torque component can be satisfied
only locally by corrugation. With all boundaries of a
junction contributing some torque, boundaries near the
junction can be expected to be more corrugated than at a
distance from it. (In fact, increased density of fine facets
in the vicinity of junctions was observed in annealed
tungsten [12].) Ultimately, one may expect corrugated
triple lines but such events would be difficult to detect.

The conditions near boundary perimeter are known
to influence evolution of the microstructure. In simple
terms, a displacement of a given interface at a junction
requires movement or extension of the other interfaces
meeting there and, as a result, junctions are considered
to be a cause of pinning. The issue has a more subtle
aspect related to the conditions considered above. One
can easily see that there is one degree of freedom when
only Herring relations are enforced: for a fixed l, one
can arbitrarily select t1 perpendicular to l and then, vec-
tors t2 and t3 are determined by the Herring equilibrium
conditions. There is no such freedom if all (2) and (8)
are effective because the number of conditions is equal
to the number of independent variables; this means that
junctions which reached the equilibrium state will have
a pinning effect on adjacent boundaries. If the actual
junctions behave similarly to the model with planar in-
terfaces, they must have an impact on the evolution
of the boundary network and must contribute to con-
siderable differences between microstructures of an-
nealed materials with anisotropic boundaries and those
with isotropic boundaries and triple junctions restricted
only by the Young’s law. In the isotropic model of grain
growth, the grain boundary network evolves smoothly
towards a global minimum of the energy stored in the
boundaries. In materials with highly anisotropic bound-
aries, with inevitable pinning events, the process must
be more ‘jerky’ as it involves states with parts of the
boundary network trapped at local energy minima.
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There is a trend to depict junctions as autonomous
entities having structured ‘cores’ (e.g. [13]), and char-
acterized by distinct mobilities (e.g., [14]) and ener-
gies (e.g., [15], see also [16–18]). However, because of
complicated interactions, it is difficult to extricate the
inherent characteristics of junctions from properties of
other elements of the boundary network. The above ex-
tension of the Herring conditions demonstrates that the
interactions are even more complex than once thought,
and it puts emphasis on seeing a junction through the
prism of attributes of adjacent boundaries.
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K A L O N J I , Acta Mater. 47 (1999) 2821.

2806


